What does the volatility risk premium say about liquidity provision and demand for hedging tail risk?

Jianqing Fan
jqfan@princeton.edu

Michael B. Imerman†
mbi212@lehigh.edu

Wei Dai
weidai@princeton.edu

December 31, 2014

JEL Classification: C01, C58, G12

Keywords: volatility risk premium, integrated volatility, ultra-high-frequency data, microstructure noise, Fourier transform, tail risk, Big Data risk analytics

*Jianqing Fan is the Frederick L. Moore Professor of Finance, Bendheim Center for Finance, Princeton University, Princeton, NJ 08544; Michael B. Imerman is an Assistant Professor, Perella Department of Finance, Lehigh University, Bethlehem, PA 18015; and Wei Dai is a Ph.D. Student, Department of Operations Research & Financial Engineering, Princeton University, Princeton, NJ 08544.

†We would like to thank participants at the 20th Annual Conference on Pacific Basin Finance, Economics, Accounting, and Management at Rutgers University and the Second Measuring Risk Conference at Princeton University as well as the Finance Department Seminar Series at Rutgers Business School. We are especially grateful for comments from Yacine Aït-Sahalia and Peter Carr. Also, feedback from the Derivatives Team at Morgan Stanley provided useful insight into the events of Fall 2008.

‡Contact Author Email: mbi212@lehigh.edu; Phone: (610) 758-6380.
What does the volatility risk premium say about liquidity provision and demand for hedging tail risk?

ABSTRACT

This paper provides a data-driven analysis of the volatility risk premium, using tools from high-frequency finance and Big Data analytics. We argue that the volatility risk premium, loosely defined as the difference between realized and implied volatilities, can best be understood when viewed as a systemati- cally priced bias. We first use ultra-high-frequency transaction data on SPDRs and a novel approach for estimating integrated volatility on the frequency do- main to compute realized volatility. From that we subtract the daily VIX, our measure of implied volatility, to construct a time series of the volatility risk premium. To identify the driving factors behind the volatility risk premium as a priced bias we decompose it into magnitude and direction. We find com- pelling evidence that the magnitude of the deviation of the realized volatility from implied volatility represents supply and demand imbalances in the market for hedging tail risk. It is difficult to conclusively accept the hypothesis that the direction or sign of the volatility risk premium reflects expectations about future levels of volatility. However, strong evidence supports the hypothesis that the sign of the volatility risk premium is indicative of gains or losses on a delta-hedged portfolio.
1 Introduction

Whether realized volatility is greater than or less than implied volatility is an empirical question, and one that has been studied over time (see Mixon, 2009). However, the literature contains conflicting evidence about implied volatility as an unbiased estimator of future realized volatility (e.g. Canina and Figlewski, 1993; Christensen and Prabhala, 1998). Theory suggests that implied volatility should be a biased estimate of future realized volatility since implied volatility includes the market price of risk; that is, implied volatility is the expected “actual (or statistical) volatility plus a risk premium. In mathematical finance this is formalized in terms of a change of measure. The volatility risk premium is defined as the difference between the expected future volatility under the physical measure (ex-ante forecast of realized volatility) and the expected future volatility under the risk-neutral measure (implied volatility from option prices). Therefore, the existence of a non-zero volatility risk premium indicates that not only is implied volatility a biased estimator of future realized volatility but, furthermore, that the bias is systematically priced.

The volatility risk premium has been an active area of research in financial economics for some time now. Whereas existing studies typically begin with an asset pricing model or some framework of stochastic or time-varying volatility, we take a step back from the theoretical foundation of volatility in financial markets and perform a purely data-driven analysis of the volatility risk premium, leveraging the insights of Big Data analytics. That is, we start with a massive data-set of transaction level prices: our sample includes over half a billion trades in SPDRs, the ETF that tracks the S&P 500 index, from 2006 to 2011. We use this data to estimate the realized volatility of the market using a robust methodology with minimal parametric assumptions. Then, we compare this realized volatility to a measure of model-free implied volatility, daily over the same five year period. Our proxy for the model-free implied volatility is the VIX volatility index, which is commonly used in other studies of the volatility risk premium. Since our objective is to quantify the volatility risk premium in a model-free, nonparametric manner, we compare the computed ex-post
realized volatility to the contemporaneous level of VIX.\(^1\) As a result, we essentially return to the fundamental idea of the volatility risk premium as a \textit{bias} – not a random bias, but a systematically priced bias. Through our data-driven analysis we seek to better understand the economic determinants of this bias.

Our study of the volatility risk premium represents a shift in the existing paradigm in financial research and risk analysis. In any quantitative field, there are two approaches to conducting research: model-based and data-driven. This dichotomy is perhaps more pronounced now than ever before in the quantitative fields of financial economics – i.e. asset pricing, derivatives, and risk management. Traditionally, the researcher would construct a model based on theory and then use data to empirically verify or validate the model and justify the economic intuition it conveys. However, with the abundance of financial data being generated every day and the increasing popularity of “Big Data” along with data mining and machine learning techniques making their way into the quant’s toolbox, a new data-driven approach to research in these areas is gaining popularity. We view our study as an extension of this research philosophy to better understand how the market prices volatility.

As mentioned above, the model-based approach is found in most of the existing studies of the volatility risk premium; that is, they begin with an asset pricing model with time-varying volatility, highlight the economic intuition and insights that are obtained from the model, then use data to test hypotheses related to these insights and draw conclusions about the economic properties of the volatility risk premium. From such studies we can identify several stylized facts about the volatility risk premium, upon which our data-driven analysis will build. First, traditional risk factors have poor explanatory power for the volatility risk premium \cite{Carr_and_Wu_2009}. Second, the volatility risk premium is intimately related to the payoff and P&L on volatility swaps and hence reflects the market price that investors are willing to pay to hedge away uncertainty about future realized volatility \cite{Demeterfi_et_al._1999, Carr_and_Wu_2009, Egloff_et_al._2010, Wu_2011, Ait-Sahalia_et_al._2012}. Third, the volatility risk premium

\(^{1}\)As we will discuss in Section 2, most (but not all) existing studies use an ex-ante estimate of the expected future realized volatility estimated from an autoregressive model. However, this gives rise to statistical problems of overfitting and model misspecification, which we wish to avoid.
risk premium is, on average or in expectation, negative – that is, that the volatility implied from option prices tends to be higher than the expected realized volatility – which serves as evidence that investors will pay to hedge volatility risk (Bakshi and Kapadia, 2003; Carr and Wu, 2009). Fourth, the volatility risk premium is highly correlated with market-wide risk aversion (Bollerslev et al., 2009; 2011; Bekaert et al., 2013; Bekaert and Hoerova, 2014). Lastly, investors are net buyers of index options (Gärleanu et al., 2009) and the volatility risk premium represents market makers’ willingness to absorb inventory and provide liquidity (Nagel, 2012).

Our study builds upon these insights, focusing on how the market prices volatility within the context of intermediaries who provide liquidity to investors who seek to hedge their downside tail risk, that is a supply and demand framework. However, as noted above, we begin with a statistical analysis of the data, using large-scale data collected from several different sources. This introduces the additional challenge of having to collate data from multiple platforms, in different formats, often on differing time scales. Such challenges are commonplace in “Big Data” research and give rise to problems that are not encountered in standard statistical analysis and small-scale empirical studies such as spurious correlation, time asynchronicity, and noise accumulation (see Fan, 2013; Fan et al., 2014). However, using tools from high-frequency finance and big data analytics, we are able to obtain a clean and more precise estimate of the true integrated volatility without any reliance on a model or parametric assumptions. We then compare our clean, de-biased realized volatility to a model-free measure of implied volatility, proxied by the VIX index to get our time-series of the volatility risk premium. We make the distinction between this ex-post formulation of the volatility risk premium with other studies and note that our resulting time series is the daily realization of the volatility risk premium. We still interpret this as the market price of volatility risk, but consistent with our data-driven philosophy, frame our measure of the volatility risk premium as a systematically priced bias.

When analyzing a statistical bias, sometimes it is insightful to analyze the magnitude of the bias separate from the direction. In fact, based on previously observed features of the volatility risk premium in the literature along with some economic
intuition, we are able to construct several testable hypotheses about the underlying
drivers of the magnitude (absolute value) and direction (sign) of the volatility risk
premium. We are the first to perform a comprehensive analysis on the magnitude and
direction of the systematically priced bias associated with the volatility risk premium,
which we feel is a significant contribution of our work. The findings are much stronger,
both statistically and economically, when looking at the determinants of the absolute
value of the volatility risk premium. First of all, while in theory or in expectation,
the volatility risk premium should be negative, the realization of the volatility risk
premium can be (and sometimes is very) positive. This makes sense when viewed
in terms of the P&L on volatility swaps, otherwise one side of the volatility swap
would always make money and would be inconsistent with no arbitrage. However,
this raises a paradox with our observed results and the stylized facts from the existing
literature: how does one interpret long stretches of a positive volatility risk premium?
Does this mean that investors go from being risk-averse to risk-loving? Or that they
have to be paid to hedge volatility risk? Whereas common sense and intuition alone
may hint that these cannot be right, our analysis of the data confirms that is not
what is happening. For example, we find that the biggest spike and largest stretch
of a positive volatility risk premium occurs at the depth of the Financial Crisis –
right after Lehman Brothers failed in Fall of 2008. Herein, our data-driven approach
shows its true value. We find that the magnitude of the volatility risk premium, that
is the absolute value of the bias between the realized and implied volatility, reflects
supply and demand imbalances in the index option market where investors go to buy
protection on downside tail risk. The demand effects are captured by a statistically
significant relationship between open interest on S&P 500 index put options and the
magnitude of the volatility risk premium. The supply effects, are captured by the
TED spread and the credit spread. The former often appears as a proxy for liquidity
(or illiquidity) in financial markets and is viewed a general measure of financial insta-
bility. The latter, which is most significant during the Financial Crisis, interestingly
has the interpretation of dealers deleveraging and shrinking their balance sheets by
selling off risky positions. This is consistent with the evidence provided by Adrian
and Shin (2010).
As for the direction of the volatility risk premium, practitioners believe that the volatility risk premium’s sign is indicative about future levels of realized volatility. When the volatility risk premium is negative, implied volatility is higher than realized volatility and market participants believe that volatility is likely to increase in the future. On the contrary, when the volatility risk premium is positive, implied volatility is less than realized volatility and market participants believe that volatility is likely to decrease in the future. This is related to the contentious idea of implied volatility’s ability to forecast future realized volatility in the literature and, more recently, the “Expectation Hypothesis” discussed in Aït-Sahalia et al. (2012). In fact, Aït-Sahalia et al. (2012) provides a way to test this hypothesis about the direction of the volatility risk premium. An alternative explanation is provided in the finance literature which says that the sign of the volatility risk premium represents the gains or losses on market makers delta-hedged positions. This was first proposed by Bakshi and Kapadia (2003) within the context of stochastic volatility and jump-diffusion models.2 Using our model-free, data-driven analysis, we are able to find much stronger evidence in favor of this explanation. This is also consistent with the realized P&L on a long position in a volatility swap.

The remainder of this paper is structured as follows. The next section, Section 2, provides more detail on the volatility risk premium and why implied volatility can, and will, deviate from realized volatility. We first make the distinction between the ex-ante formulation of the variance and volatility risk premium, which requires the use of an econometric model to forecast expected future realized variance/volatility from lagged values as an AR regression and our ex-post realization of the volatility risk premium and its interpretation as a systematic bias that is priced by the market. In Section 2 we also propose our hypotheses. Then, in Section 3, we review methods for computing realized volatility with emphasis on the estimation of integrated volatility with high-frequency data. Section 4 contains our empirical analysis including data and econometric specifications. In Section 5 we present our results with discussion about

2In a Black-Scholes-Merton world (Black and Scholes, 1973; Merton, 1973) gains or losses on the delta-hedge perfectly offset the loss or gain on the short option position. However, that is not the case with jumps and, in fact, there is evidence that downward jumps explain much of the pricing of volatility risk.
the economic interpretations and implications. Section 6 concludes and discusses possible future research in this area. We have two Appendices: Appendix A covers the technical details on the Fourier transform method that we use to address the microstructure noise in our estimation of integrated volatility with the ultra-high-frequency data; Appendix B presents simulations that demonstrate the benefit of using ultra-high-frequency data in estimating integrated volatility and the extent to which our method performs better than alternatives.

2 Implied Volatility and the Volatility Risk Premium

The notion of implied volatility is well understood and widely used by options traders and financial engineers. In this section we briefly review the concept of implied volatility and discuss in greater detail the volatility risk premium which is imbedded in implied volatilities but not included in realized volatilities. Therefore, if we wish to look at the difference between realized volatility and implied volatility, it gives us a measure of the volatility risk premium. We further view this deviation between realized and implied volatilities in an ex-post sense as a priced bias in the options markets.

While it is well known that the Black-Scholes-Merton option pricing model relies on unrealistic assumptions and therefore cannot reasonably price options, the model is still widely used by traders to infer the level of volatility associated with a particular option on a given asset (commonly stocks, indexes, or currencies). The idea is that since volatilities are unobservable but option prices are observed and convey traders expectations about the future riskiness of the underlying asset over the life of the option, the financial engineer is faced with a mathematical inverse problem. Given the output of the model – option price – solve for the value of the volatility parameter that sets the model value equal to the market price of the option. This is the implied volatility. Now, of course, any option pricing model can be used; it is just that the Black-Scholes-Merton model is the most basic and convenient. Regardless,
implied volatilities computed in this fashion are by definition model-dependent and constrained by parametric restrictions.

Researchers including Rubinstein (1994), Dupire (1994), and Derman and Kani (1994) have, to much success, extended this idea of implied volatility to extract market information across entire classes of options on a given asset (i.e. different strikes and/or maturities; often referred to as the “volatility smile or “volatility surface) and fit a deterministic function of asset price, strike price, and time to expiry.

More recently, the work of Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) broke away from the reliance on models and derived and implemented a model-free implied volatility using only current option prices. It is along these lines that we would like to use implied volatility in our data-driven analysis.

The implied volatility is forward-looking and represents the markets expectation of volatility over the life of the option. Mathematically, it can be thought of as an expectation under the risk-neutral or pricing measure. The volatility as computed from the underlying asset price movement can be thought of as being generated under the physical or statistical measure. The difference between the two represents the market price of volatility risk, or what is referred to as the “volatility risk premium”. In some instances it is easier to work with the squared volatility or the variance, which is why we will first define the variance risk premium as follows.

\[VRP_t = E^P_t \left[\int_t^T \sigma^2_u du \right] - E^Q_t \left[\int_t^T \sigma^2_u du \right]. \] (1)

We should note that although we present all of our results in terms of the volatility risk premium, everything is robust with respect to the variance risk premium as well. The reason we chose to use the former is because the results are easier and more natural to interpret in terms of vol units (as opposed to units squared with the latter). If you take the square root of each of the expectations in Equation (1) you would get the volatility risk premium which we will denote as a lowercase \(\text{vrp}_t \) rather than the uppercase \(\text{VRP}_t \) for the variance risk premium. Evidence that the two may be used interchangeably is found throughout the literature. A recent example is Drechsler
and Yaron (2011) where volatility is the object of interest, but the quantity used in the analysis is the variance risk premium. They define the “variance premium” as the difference between VIX squared and the conditional expectation of the realized variance. Conceptually, this definition follows the idea that, for a financial instrument, the risk premium is the difference between the price of the contract and the expected payoff of the contract. When dealing with the variance risk premium, the “price” is the VIX squared (which represents the expected squared volatility under the pricing measure) and the “payoff” is the realized variance (with expectation taken under the physical measure). In fact, in most volatility (variance) risk premium studies the expectation under the risk-neutral or Q-measure will be proxied by the VIX volatility index (VIX squared). Using VIX will be nice for our purposes as it is closely related to the aforementioned model-free implied volatility.\(^3\) We will discuss VIX more in Section 4.2. The reader may note that the Drechsler and Yaron (2011) setup is the reverse of our definition given in Equation (1). The decision of how to sign the volatility or variance risk premium is a matter of personal preference and perspective. We follow Carr and Wu (2009) who take the perspective that the negative sign reflects investors’ willing to *pay* to hedge their volatility risk. The idea of hedging downside tail risk will become a central theme in explaining our empirical results. However, we further assert that the sign of the volatility risk premium plays a secondary role to the *magnitude* of the volatility risk premium when trying to find the underlying economic determinants over time.

In many of the volatility and variance risk premium studies the first term in Equation (1) is computed as an ex-ante conditional expectation of the future realized volatility or variance given the current value that is fed through an estimated autoregressive model. We consciously choose not to do this, but rather use an ex-post measure of the realized volatility instead. The reason is computing the ex-ante conditional expected realized volatility introduces model error and possible misspecification bias. Instead we compare the ex-post realized volatility (averaged over a one month period) to the model-free implied volatility (covering the same horizon) to

\(^3\)See Carr and Wu (2006) and Jiang and Tian (2007) for more on the relationship between the model-free implied volatility and the VIX volatility index.
get a realization of the volatility risk premium on each trading day over the sample period. In symbols, this is

\[vr_p_t = \sqrt{\int_t^T \sigma_u^2 \, du} - \sqrt{E_t^Q \left[\int_t^T \sigma_u^2 \, du \right]} . \]

(2)

Therefore another distinction from the uppercase \(VRP_t \) in Equation (1) and the lowercase \(vr_p \) in Equation (2) is that the latter is our bias representation of the volatility risk premium. Furthermore, once we substitute the level of the VIX volatility index in for the risk-neutral expectation, it would be the realization of the volatility risk premium which is akin to the realized P&L on a volatility swap (see [Demeterfi et al., 1999]).

Recent studies have been able to establish some interesting empirical properties of the volatility/variance risk premium. [Carr and Wu (2009)] note that traditional risk factors have very little explanatory power for the variance risk premium (we are able to confirm this in our empirical analysis of the volatility risk premium). They suggest that there is an independent risk factor that is responsible for driving the principally negative variance risk premium. Furthermore, they find evidence that the \(VRP \) is time-varying. [Bollerslev et al. (2009)] study the predictability of the variance risk premium on stock market returns from 1990 to 2005. They find that there is a strong, statistically significant positive relationship between the \(VRP \) and quarterly future stock returns. They note that the predictive power is better than other financial and macroeconomic factors that are typically used in stock market return forecasting. [Bollerslev et al. (2011)] examine the volatility risk premium and its relation to several macro-financial state variables. They find that the \(vr_p \) exhibits significant temporal dependencies related to the macro-finance state variables and is also able to help predict stock market returns. [Zhou (2011)] studies the predictability of the variance risk premium across financial markets through equity returns, bond returns, and credit spreads. He observes that the \(VRP \) predictability maximizes typically in the one to four month horizon, and the short-run risk premium dynamics can be interpreted within a general equilibrium model which prices stochastic economic un-
certainty. The calibrated model can help explain the equity premium puzzle and the credit spread puzzle in the short-run. However, it remains a challenge to incorporate long-run predictability patterns of consumption growth and asset returns found in literature.

Several studies have examined the role that jumps play. Using high-frequency index futures data, Wu (2011) computes maximum likelihood estimators of the instantaneous realized return variance. His analysis shows that both the jump arrival rate and the absolute value of the negative variance risk premium are proportional to the variance level. This last finding, in terms of the absolute value, will be very relevant in developing our hypotheses below and in interpreting the results of our analysis. Specifically, it is evidence that when volatility is high, the volatility risk premium is either very positive or very negative; that is the bias between realized and implied volatility increases when the level of uncertainty is heightened.

Todorov (2010) analyzes the variance risk premium under a semi-parametric stochastic volatility model with the inclusion of price jumps. The model parameters are estimated by GMM with high-frequency data on the five-minute return of S&P 500 index futures contract from 1990 to 2002. The results provide empirical evidence that investors are willing to pay for protection against jumps, especially when preceded by recent jumps, which supports the hypothesis that risk aversion is time-varying and that the volatility risk premium represents the cost of protection against market crashes.

The main takeaways are that the volatility risk premium appears to be a priced risk factor in the capital markets (both equity as well as credit) and investors are willing to pay a premium to hedge their downside risk, especially when uncertainty is high. However, our knowledge is still very limited about the determinants of the volatility risk premium and we do not have sound empirical evidence documenting what exactly the volatility risk premium says about the mechanics of the market for pricing and hedging risk.

Bollerslev et al. (2011) refer to their estimate of the vrp as a “risk aversion index”. It seems that many practitioners agree with this interpretation of the volatility risk
premium, and we are able to find some evidence that supports this point. This leads to something of a paradox: suppose we choose to define the volatility risk premium such that it is typically negative, thereby indicating that market participants are willing to pay to hedge their volatility risk. Then, when the vrp gets more negative it indicates that investors are becoming more risk averse. But then how do we explain the occurrence of a large positive spike in the volatility risk premium; investors becoming risk loving? As we will show, the data indicates several instances over our five year sample period where the vrp turns positive, most notably during the Financial Crisis. Surely, investors did not become risk loving during the Financial Crisis.

Our prior is that the positive spikes in the volatility risk premium reflect liquidity conditions in the financial markets. Consequently, several recent papers in the financial economics literature have linked the vrp to liquidity, intermediation, and hedging demand. These papers provide the conceptual underpinning that we use to construct stylized facts and testable hypotheses about the economic meaning of the volatility risk premium. First, the volatility risk premium represents option market makers’ willingness to absorb inventories and provide liquidity (Gârleanu et al. (2009), Nagel (2012)). Also, investors are net buyers of index options (Gârleanu et al. (2009)). To the extent that investors use index put options to hedge their downside tail risk, then we should be able to use option market data to draw inferences about investors’ demand for hedging downside tail risk and intermediaries’ willingness to meet this demand (i.e. provide liquidity). The volatility risk premium can, therefore, naturally be interpreted as the compensation that option market makers receive for this intermediation and liquidity provision to meet hedging demand. Adrian and Shin (2010) find evidence of this interpretation in the expansion and contraction of financial intermediaries’ balance sheets.

Even within this conceptual framework of intermediation and liquidity provision, the existence of a positive vrp is still a bit puzzling. Does this mean that periods of positive vrp indicate that sellers of volatility have to pay hedgers in order to meet their demand? The answer to this question is “no”; rather, the direction (sign) contains different information than the magnitude of the vrp. By some accounts,
traders view the sign of the volatility risk premium as indicative of nothing more than the market’s expectation of future levels of volatility. It is then the magnitude of the volatility risk premium that represents the actual price of volatility risk. The magnitude of the volatility captures the extent to which market makers are willing to absorb inventory, provide liquidity, and meet hedging demand. When demand for hedging downside tail risk increases, market makers will take the short side (sell volatility) but must be compensated appropriately. The price of volatility increases and implied volatility rises relative to realized levels. When demand for hedging downside tail risk decreases, there will be a selloff of volatility and market makers will take the other side, but only at a substantial discount. Implied volatility falls relative to realized levels. Therefore, the magnitude captures the extent to which market makers must be compensated to provide liquidity to the options markets, either as a premium or discount if intermediaries are selling volatility to meet hedging demand or buying it back in response to a reduction in hedging demand.

Taking the view of the volatility risk premium as a systematically priced bias we decompose the vrp in Equation (2) into sign and magnitude as follows

$$\text{vrp}_t = \left| \sqrt{\int_t^T \sigma_u^2 du} - \sqrt{\mathbb{E}_t^{\mathbb{Q}} \left[\int_t^T \sigma_u^2 du \right]} \right| \times \text{sgn} (\text{vrp}_t).$$

(3)

We then perform several statistical and econometric tests on each of the components of vrp in Equation (3). First we must introduce our testable hypotheses about both the magnitude and direction of the volatility risk premium.

Magnitude Hypotheses:

H1: The magnitude of the volatility risk premium reflects investors’ demand for hedging tail risk.

H2: The magnitude of the volatility risk premium reflects the willingness of option market makers to absorb inventory and provide liquidity.
Direction Hypotheses:

H3: The sign of the volatility risk premium contains information about future levels of realized volatility relative to implied volatility.

H4: The sign of the volatility risk premium reflects the delta-hedged gains or losses for option market makers.

We should note that the hypotheses need not be mutually exclusive. Hypothesis H1 can be thought of as demand-side effects and Hypothesis H2 can be thought of as supply-side effects. We may, therefore, find that supply and demand forces working with or against each other to determine the magnitude of the vrp at a given time.

In order to econometrically test the volatility risk premium, we must come up with an accurate and clean measure of the actual volatility in the market. With the growth of high-frequency financial data and the application of continuous time finance to the analysis of such data, the tools for estimating the integrated volatility of a price process have become plentiful. In the next section, we give some background on the mathematics and statistical properties of various estimators before presenting our methodology for computing the volatility risk premium using ultra-high-frequency data.

3 Realized Volatility and Estimating Integrated Volatility with High-Frequency Data

In this section we review some of the existing methodologies for estimating volatility, with emphasis on recent advances in the use of high-frequency data. Typically, the modeler will assume that the latent true (log)price X_t follows an Ito process

$$dX_t = \mu_t dt + \sigma_t dW_t$$

(4)
where W_t is a standard Brownian Motion and μ_t and σ_t are time-varying drift and volatility, respectively, that may or may not follow stochastic processes themselves.\(^4\) However, what we observe is the transaction price, or its logarithm, Y_t at times \(\{t_i\} \in [0,T]\), which are related to X_t according to

\[Y_{t_i} = X_{t_i} + \epsilon_{t_i}, \quad (5) \]

Note that the ϵ_{t_i} in Equation (5) represents \textit{microstructure noise}. The goal is to use observable price data to estimate the volatility, or σ_t in Equation (4). It is important to note the different restrictions that are placed on the structure of σ_t and ϵ_t (in Equations (4) and (5), respectively) as quite often these are the subtleties that set one method apart from another.

First, suppose we observe regularly spaced Y_{t_i}, where $t_i - t_{i-1} = \Delta$. Then, let us define $n = \frac{T}{\Delta}$; i.e. n is the number of sampled data points. If σ_t is modeled parametrically as constant σ, and the noise distribution is assumed to be Gaussian with mean 0 and variance a^2, then the log-likelihood function of $\delta Y_i = Y_{t_i} - Y_{t_{i-1}}$ is

\[l(\sigma^2, a^2) = -\frac{1}{2} \log \det(\Omega) - \frac{n}{2} \log(2\pi) - \frac{1}{2} \delta Y' \Omega^{-1} \delta Y, \quad (6) \]

where Ω is the covariance matrix of δY and Ω^{-1} can be calculated explicitly.

Choosing σ and a to maximize Equation (6) gives the Maximum Likelihood Estimator, or MLE, of volatility. It can be shown that the MLE is consistent for both the volatility component σ^2 and the noise component a^2 at rates $O_p(n^{-1/4})$ and $O_p(n^{-1/2})$, respectively. Moreover, misspecification of the marginal distribution of ϵ does not have adverse consequences. (Aït-Sahalia et al. (2005), Xiu (2010))

The assumption that volatility is constant is probably not very reasonable. There is considerable evidence of time-varying volatility which means that we have to come up with a way to estimate the instantaneous volatility process σ_t either parametrically

\(^4\)Some methodologies can also be applied to jump-diffusion processes rather than just pure diffusion processes. This does not make a difference for us, since our analysis is model-free and non-parametric.
or nonparametrically (see, e.g., Andersen et al. (2004)). Quite often we are interested in estimating the integrated volatility over a period of time. This is done by making use of the quadratic variation, $\langle X, X \rangle_T$, of the stochastic process described by Equation (4). The quadratic variation is

$$\langle X, X \rangle_T = \int_0^T \sigma_t^2 \, dt.$$

(7)

We want to estimate this quantity using the observable price data. A naive estimator would be the Realized Volatility (RV) estimator

$$[Y, Y]_T = \sum_{i=1}^n (Y_{t_{i+1}} - Y_{t_i})^2,$$

(8)

which is a consistent estimator in a noise-free model. However, since the observable price process given by Equation (5) is contaminated by the microstructure noise this RV estimator is both biased and inconsistent.

Statistical theory indicates that we should be able to improve the accuracy and precision of our estimate by increasing the rate at which we sample the data; hence the value of ultra-high-frequency data.\footnote{See Appendix B where we use simulations to illustrate the benefit of using ultra-high-frequency data.} This would be the case if we could observe X_t directly; but microstructure noise introduces an added dimension of complexity to the problem. In fact, assuming iid noise, the bias of the RV estimator is $2n\mathbb{E}[\epsilon^2]$. This tells us that as we increase the frequency of the price data, the effect from noise becomes more overwhelming. Indeed, much of the literature on estimating integrated volatility with high frequency data attempts to address this bias that arises from microstructure noise.

One way to address the problem of noise when sampling at too high of a frequency is to sample sparsely and use the corresponding RV estimator. This practice, known as the subsampling approach, was first introduced by Zhou (1996). However, even when sampling sparsely at the optimally-determined frequency, the fact that large portions of data are discarded violates basic statistical principles. Furthermore,
Zhang et al. (2005) argue that sampling over longer horizons merely reduces the impact of microstructure, rather than quantifying and correcting its effect for volatility estimation.

One of the earliest solutions to incorporate the full data sample is Two Scales Realized Volatility (TSRV) as proposed by Zhang et al. (2005). The TSRV estimator is based on subsampling, averaging, and bias-correction. They sample sparsely over subgrids of \(n \) observations to get \(K \) subsamples on a slower time scale. For each such sample the RV estimator is \([Y,Y]_{T}^{(\text{sparse},k)}\), \(k = 1, \cdots, K \). Averaging them yields the estimator \([Y,Y]_{T}^{(\text{avg})}\), and the final de-biased estimator is:

\[
\hat{\langle X,X \rangle}_{T}^{(\text{tsrv})} = [Y,Y]_{T}^{(\text{avg})} - \frac{\bar{n}}{n}[Y,Y]_{T},
\]

after accounting for the bias, where \(\bar{n} = \frac{n}{K} \). Choosing the optimal sampling step \(K = cn^{2/3} \) yields the convergence rate \(n^{-1/6} \). The TSRV estimator is shown to outperform the standard RV estimator empirically in the study by Aït-Sahalia and Mancini (2008).

A closely related estimator is Multiple Scale Realized Volatility (MSRV), which is proposed and derived in Zhang (2006). As a generalization of TSRV, the MSRV estimator combines \(M \) different time scales with weights, when chosen optimally, can achieve the optimal convergence rate \(n^{-1/4} \). Based on a different smoothing idea, Fan and Wang (2007) introduces a different estimator achieves the same rate, but allows jumps in the price processes.

Realized kernels, which are based on linear combination of autocovariances, represent another popular class of estimators. Barndorff-Nielsen et al. (2008) designed several realized kernels which are robust to endogenous sampling and noise. The realized kernel estimators can achieve convergence rates up to that of MSRV. Barndorff-Nielsen et al. (2009) discuss details of implementing the realized kernel methodology to estimate integrated volatility with high-frequency data. Barndorff-Nielsen et al. (2011) are able to achieve consistency for one of the more problematic realized kernel estimators by making use of subsampling.
The pre-averaging approach of Jacod et al. (2009) uses all or most of the data, but averages over a moving window. The averages are used to compute the realized volatility, which then have to be adjusted by an additive term to eliminate bias. The result is a rate optimal (with convergence rate $n^{-1/4}$) consistent estimator of integrated volatility in the presence of microstructure noise. In many ways, one can think of the pre-averaging approach as removal of microstructure noise by local average smoothing. Additionally, pre-averaging is an effective method of data cleaning.

Returning to the parametric approach, if we do not assume that volatility is constant and noise normally distributed with variance σ^2, but nevertheless use the log-likelihood function in Equation (6), the resulting estimator is the quasi maximum likelihood estimator (QMLE). Interestingly, it is still a consistent estimator at the most efficient rate $n^{-1/4}$. Statistical properties of the QMLE are derived in Xiu (2010).

Finally, another interesting approach involves working on the frequency domain rather than the time domain. As such, it relies on the Fourier transform (see Olhede et al. (2009)). The procedure computes a consistent and unbiased estimator of integrated volatility at ultra-high-frequencies under very general specifications of the microstructure noise process. This is the methodology that we employ to estimate integrated volatility for our study.

With the frequency domain method, integrated volatility is estimated through the variance of the Fourier transform of the increment process. Under the rationale that the high-frequency coefficients are more heavily contaminated by the noise, the de-bias procedure is done locally at each frequency. The unknown parameters involved in the de-bias are estimated through MLE using a Whittle likelihood function. This frequency domain methodology allows us to easily model autocorrelated noise as a moving average process, and then disentangle the noise effect at each frequency in the same way. The order of the moving average process – i.e. the appropriate number of lags in the autocorrelated noise – is determined through model selection using the corrected Akaike information criteria (AICC). Technical details regarding this procedure can be found in our Appendix A.
The frequency domain method for estimating integrated volatility has several desirable features, both in terms of the statistical properties and the practicality in applying to real financial data. From the financial modeling and data analysis point-of-view, working in the frequency domain provides an elegant way to address more general specifications of the microstructure noise process as mentioned in the previous paragraphs. For the most part, the other methods discussed above assume that the noise process, ϵ_t, is iid or uncorrelated. However, in practice – i.e. in dealing with real financial data – this is an unreasonable assumption. Autocorrelated microstructure noise may be a more reasonable assumption, since large disturbances this second may be highly correlated with large disturbances last second, especially if there is a lot of noise in the market. This may give the impression that the market is more turbulent or volatile, when in fact the persistent volatility in our observed time series, Y, is coming from the microstructure noise. Thus, we need a clean way to strip away the true volatility of the price process in the presence of microstructure noise at ultra-high-frequencies. This is why we use the frequency domain estimation method in computing integrated volatility. In fact, we find that the data indicates the latent noise process has on average lag-1 autocorrelation, and the time varying order of autocorrelation ranges from 0 to 5.

In the next section we discuss our data in detail: the collection, cleaning, and processing; as well as the construction of our volatility risk premium time series and the other financial market and economic variables that are used in our econometric analysis of the volatility risk premium.

6While most previous approaches assume iid microstructure noise, recent work by Aït-Sahalia et al. (2011) addresses the complicated issue of estimating volatility from ultra-high-frequency data with dependent microstructure noise. Our methodology is similar in that it also permits estimation of integrated volatility for more general classes of microstructure noise, but with less parametric restrictions.
4 Empirical Analysis

4.1 Data

The data used for our empirical analysis came from several different sources, on multiple platforms, and were analyzed using a variety of softwares. This is a common feature of Big Data analytics and requires careful processing and collating to ensure that the data are in consistent formats, with large-scale computations often being done in parallel (see Fan et al., 2014). First, we began by cleaning and processing the ultra-high-frequency transaction data for the SPDR ETF. Then we used the cleaned price data estimate the integrated volatility on the frequency domain; this was done in MATLAB using the Fast Fourier Transform (FFT) algorithm as well as minimizing the Whittle log-likelihood function. The computed integrated volatility was then merged with a daily time series of the VIX index, which came from yet another source, and the difference between the two time series gave us the volatility risk premium. Then, preliminary statistical analysis was performed on the constructed volatility risk premium time series. Finally, we had to collect, clean, and merge with the economic, financial market, and risk factor variables from their respective databases. This data was used in our econometric analyses of the determinants and drivers of the volatility risk premium.

Transaction price data for the SPDR ETF (ticker SPY) was obtained from the TAQ database within WRDS. The sample period we studied goes from July 2006 to June 2011. Over these five years there were a total of 523,814,632 trades. For our integrated volatility estimation method to work best, we need as many observations as possible. Trade volume decreases considerably as we go further back in time which is why we stop at 2006. The first year of data (2006-2007) has approximately one-quarter the number of trades as the final year of data (2010-2011). Additionally,

We illustrate this principle with simulations in Appendix B. The simulations show that, under our method, sampling at higher frequencies allows for the most precise estimation of integrated volatility. Our method performs better than naïve subsampling rules that are typically used in high-frequency studies, and as noted earlier, has the added benefit that the microstructure noise can be autocorrelated and so we need not restrict ourselves to the case where microstructure noise is independent over time.
this sample period contains about the same number of observations Pre-Crisis, Crisis, and Post-Crisis for better comparison across subperiods.

For data cleaning and processing purposes, we filtered the data based on the “Correction Indicator” (CORR) and “Sale Condition”. We kept only transactions where CORR=00; these represent regular trades that were not cancelled or corrected. This resulted in only 0.003% of the data being removed from the sample, leaving us with 523,796,850 trades remaining. We also eliminated any “Special Condition Trades” which introduced suspicious and irregular patterns in the transaction price sequences (i.e. large jumps that were immediately reversed). This resulted in 1.8% of the data being removed from the sample leaving us with 514,270,624 trades remaining.

Since multiple trades can occur in any given second, we next introduced an aggregation step in the data processing. This would allow us to have a second-by-second time series of SPY prices. We tried two methods for aggregation: median and size-weighted average price and did not find significant aberrations. Finally, we had to include an expansion step to account for seconds where no trades were executed. To address these instances we used piecewise constant interpolation; i.e. if there was no trade at second t then we filled it with the last executed price $t - 1$ (“last tick”). This resulted in 29,461,859 second-by-second data points covering 1,259 trading days. This was the data that was used to compute our daily time series of monthly realized volatility (on a rolling 21 trading day basis) via the frequency domain estimation methodology.

The daily opening level of the VIX volatility index was downloaded from the CBOE database and serves as our model-free implied volatility as discussed in Section 2.

The explanatory variables that we use in our regressions also come from multiple sources. First, we have the traditional risk factors from the Fama-French Three Factor Model [Fama and French, 1993]; the data for the Fama-French factors are available from Kenneth French’s website. We also include the credit spread, also known as

\footnote{http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html}
the default risk premium, which is the difference in yield on Baa-rated and Aaa-rated corporate debt. The yields on corporate debt, by Moody’s rating, are available from the FRED database maintained by the Federal Reserve Bank of St. Louis. Use of the credit spread as a risk factor in asset pricing studies goes back to Chen et al. (1986) and has the interpretation as a measure of investor risk aversion. It has subsequently been used in volatility risk premium studies such as Zhou (2011). We will see that there is also a supply-side interpretation of the highly significant effects that the credit spread has on the volatility risk premium (and its magnitude), especially during the Crisis subperiod. The TED spread is included to capture liquidity effects in the financial markets and a measure of distress in the financial system. The TED spread is the difference between 3-month Eurodollar rates and 3-month Treasury rates, both of which are also available through the FRED database. The interpretation of the TED spread follows from the logic that as uncertainty in the financial system heightens, financial institutions charge more to each other for short-term borrowing—this is reflected in Eurodollar rates; at the same time they require better collateral, which drives up demand for Treasury Bills and pushes down their rates (Brunnermeier, 2009).

As a final explanatory variable we include the daily open interest for put options on SPY, which is obtained from the OptionMetrics database. We use this as a proxy for investors’ demand for hedging tail risk, following the combined logic of several recent options studies. Cao and Han (2013) use open interest as a proxy for option demand pressure. Additionally, Gârleanu et al. (2009) find that investors are net buyers of index options. Since S&P 500 index put options give investors a way to hedge against market-wide crashes, the open interest provides a natural proxy for investors’ demand to purchase protection and hedge downside tail risk. While options on the SPDR ETF (SPY) are different from index options on the S&P 500 (SPX), they essentially provide the same protection for investors and have some features that may make them more attractive (see Kelly et al., 2012). In fact, our choice to use SPDR options might be even more consistent with our desired proxy as demand for hedging downside tail risk, since the former are American-style options.
with physical settlement (SPX index options are European-style options with cash settlement only) and therefore give the investor more flexibility and robustness in protecting themselves against market crashes. Furthermore, when we discuss market makers’ delta-hedging, SPDRs would be a more effective hedge on SPY put options than on SPX index options.

The explanatory variables are summarized in Table 1. Descriptive statistics for all variables are given in Table 2 which will be referred to throughout the analysis and discussion.

4.2 Construction of the Volatility Risk Premium

In this section we discuss our construction of the volatility risk premium from the market data. Consistent with our representation of the vrp as a “bias”, we calculate it as the deviation of the realized volatility from the expected volatility implied by option prices. Therefore we first compute the realized volatility as the estimated integrated volatility using the Fourier method on the ultra-high-frequency transaction data for the SPDR S&P 500 ETF (ticker SPY). After cleaning and processing the transaction-level data, we use the second-by-second price data points and apply the frequency domain methodology, described in Section 3 and detailed in Appendix A, to estimate the integrated volatility for each trading day. This gives us a daily time series of the realized volatility; however, there is a lot of variation in the day-to-day realization of this quantity which will contribute to additional statistical noise in our attempt to quantify the systematic bias that is the vrp. To better represent this systematic bias we smooth the time-series of realized volatility by taking a rolling average of the next 21 trading days so as to cover the same month as the contemporaneous VIX index, which is our measure of model-free implied volatility. Define this rolling average as \(\{RV_t\}_{t=2006.07}^{2011.06} \), where \(RV_t = \frac{1}{21} \sum_{i=1}^{21} RV_{t+i-1} \) and \(RV_i \) represents the realized volatility for day \(i \) computed using the frequency domain methodology.

Then we take the daily value of the VIX volatility index obtained from the CBOE dataset within WRDS. The VIX is a model-free implied volatility extracted from
near-term put and call options on the S&P 500 index.9 We use the Open value (rather than the Close) so as to be consistent with our realized volatility estimate in terms of the 21-trading-day period for which we are looking at on any given day.10 The time series of the VIX Open value, $\{VIX_t\}_{t=2006.07}^{2011.06}$ is then subtracted from the average realized volatility to measure the extent that the implied volatility represents a biased expectation of the future realization:

$$v_{rp_t} = RV_t - VIX_t.$$ (10)

A time series of our computed v_{rp} over the sample period is plotted in Figure 1. Looking at the Figure, two things stand out immediately: first, the risk premium is negative throughout most of the sample period; second, there are a few pockets where the v_{rp} goes positive– most notably in the third quarter of 2008. That large positive spike which extended for a period of more than two months seemed to be anomalous to what most of the literature says. To the extent that the negative v_{rp} represents investors being risk averse, does a positive v_{rp} mean that investors went from risk averse to risk loving during this time? That certainly does not seem right, since that period includes the failure of Lehman Brothers and the plunging of the global economy into the worst financial crisis in history. So perhaps it means that investors who typically pay to hedge volatility risk were no longer willing to, but rather required compensation (i.e. be paid) to enter into any volatility related transaction? A similar story was told about the negative yields on T-Bills during the Fall of 2008, but it doesn’t seem to fit with what is going on in our data. So perhaps it is a fictitious by-product of the frequency domain estimation methodology? Fortunately, that was not the case either as we were able to confirm positive v_{rp} including the third quarter of 2008 using other methods for computing realized volatility (i.e. the TSRV estimator of [Zhang et al. (2005)](Zhang2005) and the pre-averaging estimator of [Jacod et al. (2009)](Jacod2009)).

9For details on the methodology used in constructing the VIX volatility index please see [CBOE (2009)](CBOE2009). A similar methodology is employed in [Jiang and Tian (2005)](Jiang2005) where the information content of model-free implied volatility is studied. The CBOE volatility index is studied in [Carr and Wu (2006)](Carr2006) and [Jiang and Tian (2007)](Jiang2007).

10For robustness, we ran the regressions using the VIX Close value and found that the results (sign, significance) are consistent for the variables of interest in our study.
One possible explanation for this large positive spike in the vrp time series is that the option markets underpriced the actual level of volatility during that period of time. Unexpected shocks such as Lehman Brothers’ failure and subsequent government interventions kept the markets on edge, and it was impossible to know the magnitude of such a market tsunami and its impacts on realized volatilities, a priori. The idea that the government would provide a backstop against any large financial catastrophe, known as the “Fed put”, was arguably priced into the market keeping implied volatilities low relative to realized volatilities. Therefore, there was a strong bias in one direction with implied volatility underestimating the realized volatility. This eased a bit after Lehman did fail, but when officials were quick to step in thereafter, it remained to keep implied volatilities lower than perhaps they should have been given the circumstances. After the government programs such as TARP and QE were in place and it became clear there would be no “quick fix”, implied volatilities rose relative to realized levels (even though both were rising steadily during this entire period because of the high degree of overall uncertainty) thus reversing the bias. In order to isolate the effects we analyze the magnitude and direction separately and test the hypotheses in Section 2.

4.3 Econometric Tests

4.3.1 Preliminary Regressions

To begin the econometric analysis we start off with a couple of baseline regressions. First, we ran a standard regression with the traditional risk factors from the Fama-French Three Factor Model (Fama and French (1993)). The Fama-French regression is

\[\text{vrp}_t = \beta_0 + \beta_1 \text{Mkt}_t + \beta_2 \text{SMB}_t + \beta_3 \text{HML}_t + \epsilon_t. \]

\text{(11)}

\footnote{Data for the Fama-French factors are available from Kenneth French’s website: \url{http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html}.}
The results for the Fama-French regression can be found in Table 3. Note that although the market risk premium is highly significant (HML is also significant at the < 5% level), the R-squared is very small (less than 3%) indicating that traditional risk factors have very little explanatory power for the volatility risk premium. This is consistent with previous findings in other studies.

We now introduce additional risk factors that may have theoretical links to the volatility risk premium as indicated by the literature (e.g. Garleanu et al. (2009), Nagel (2012), etc.). We want to be able to capture demand for hedging tail risk, liquidity provision, and the overall stability of the financial system. We proxy demand for hedging tail risk with the open interest on SPY put options. The TED spread is viewed by many as a proxy for liquidity risk and a measure of distress in the financial sector (see Brunnermeier, 2009). The credit spread, or the default risk premium, can be viewed as a measure of macro-level risk aversion, but also has a nice interpretation in terms of liquidity provision capturing the de-leveraging and risk reduction that occurred after the onset of the Financial Crisis. This next regression is specified as

$$ vr_{p_t} = \beta_0 + \beta_1 Mkt_t + \beta_2 SMB_t + \beta_3 HML_t + \beta_4 CS_t + \beta_5 TED_t + \beta_6 POI_t + \epsilon_t. \quad (12) $$

The results for this regression over the whole sample period are reported in Table 4. Here we see that the inclusion of the additional factors – credit spread, TED spread, and put option open interest – improve the explanatory power substantially as the R-squared is over 40%. The market risk premium remains significant at the < 1% level; the credit spread and put option open interest are also significant at the < 1% level. Note that the TED spread is not significant.

Continuing with our view that the vrp is a priced bias, we next decompose it into magnitude and sign and test the hypotheses proposed in Section 2. The idea is that when the volatility risk premium is negative then there are one or more fundamental risk factors that will push it further into negative territory, and these same risk factors explain large positive spikes in the volatility risk premium when it is positive. It is

12 All regressions results are reported with Newey-West robust standard errors.
the magnitude of the bias that reflects supply and demand imbalances in the market for hedging tail risk.

4.3.2 Magnitude Regressions

Our next econometric specification is to use the explanatory variables from Equation (12), but now regressing the magnitude component of the volatility risk premium on them to see what additional insights might be obtained within the context of our hypotheses. The magnitude regression is specified as

\[|vrp_t| = \beta_0 + \beta_1 Mkt_t + \beta_2 SMB_t + \beta_3 HML_t + \beta_4 CS_t + \beta_5 TED_t + \beta_6 POI_t + \epsilon_t. \] (13)

The results of the magnitude regression for the whole sample period are shown in Table 5. Comparing Table 5 with Table 4 – i.e. the results of the magnitude regression specified by Equation (13) with the results of the original \(vrp \) regression specified by Equation (12) – reveals a few interesting features. First of all, by regressing the absolute value of \(vrp \) on the explanatory variables, the R-squared goes from just over 41% to over 58%. The latter indicates that over our entire sample period, we find that the factors are able to explain more than half of the variation in the magnitude of the volatility risk premium. Furthermore, since the most significant variables are the credit spread and the put option open interest, we may conclude that, after controlling for the traditional risk factors, credit spread and put option open interest can be attributed much of the explanatory power.

Additional evidence for the value of studying the size of the bias apart from the direction can be seen by comparing the sign and economic meaning of the coefficient estimates in the original regression (Table 4) with those in the magnitude regression (Table 5). As just pointed out, both regressions have credit spread as one of the most significant factors. Although, note that the p-value associated with the magnitude regression is much smaller than that on the original \(vrp \) regression. Furthermore, the coefficient of \(CS \) in the magnitude regression is positive, but negative in the original regression. The difference in signs is perfectly explainable, but only during those
times when the vrp is negative with the popular interpretation as the amount that investors pay to hedge their volatility risk. The coefficient estimate of -6.9265 indicates that a 100bps widening of the credit spread results in an increase of approximately 693bps in the cost of hedging such risk (i.e. more negative). This is consistent with our interpretation of the coefficient estimate of 5.1703 in the magnitude regression.\footnote{Also, when credit spreads widen, other variables can change too. Therefore, it might be insightful to also perform marginal regressions on the individual factors. The logic behind marginal regressions is as follows. Suppose $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$; when X_1 increases from x_1 to $x_1 + \Delta_1$, a more plausible scenario is for X_2 to change from $\mathbb{E}[X_2|X_1 = x_1]$ to $\mathbb{E}[X_2|X_1 = x_1 + \Delta_1]$ rather than staying the same. If we treat the conditional expectation $\mathbb{E}[X_2|X_1]$ as linear in X_1 (i.e., $\mathbb{E}[X_2|X_1] = a + b X_1$), then the change in y is $\Delta_y = (\beta_1 + \beta_2 b) \Delta_1$ rather than just $\beta_1 \Delta_1$, which is equivalent to the marginal regression of Y on X_1. That is, if we regress Y on X_1 only, then the coefficient before X_1 is exactly $\beta_1 + \beta_2 b$. We ran marginal regressions of this type on all of the factors for the entire sample period and each of the subperiods for robustness. We find that the results are consistent with those reported for the multivariate regressions. Some marginal regression results are reported in the paper.}

Since, under our hypotheses, it is the magnitude of the deviation of realized volatility from implied volatility that represents the market price of volatility, the interpretation is that a 100bps widening of the credit spread results in an increase of approximately 517bps in this price, holding the effects from the other factors constant. However, this intuition falls apart when we consider the times when vrp is positive (e.g. December 2007 through January 2008, and August 2008 through October 2008). The coefficient estimate of -6.9265 basically says that a 100bps widening of the credit spread results in a decrease in the positive vrp of 693bps. This interpretation is not economically justified, especially within the context of the framework we propose. In summary, it is clear that overall the magnitude component captures more information and better reflects the underlying economics.

We then performed the magnitude regression in Equation (13) for three subperiods – “Pre-Crisis”, “Crisis”, and “Post-Crisis” – to see if we can identify any patterns that might coincide with the dramatic changes in financial markets as a result of the Financial Crisis of 2007-2009. It is difficult to assign start and end points to financial crises, since they are not as clearly defined as business cycles. To best address this, we use the official NBER recession dates which puts our “Crisis” period from December 2007 to June 2009. The results for the magnitude regressions for the
three subperiods are reported in Tables 6, 7, and 8 for “Pre-Crisis”, “Crisis”, and “Post-Crisis”, respectively.

An initial comparison of the results in Tables 6, 7, and 8 with those in Table 5 reveals two preliminary observations. First, there is considerable variation in the explanatory power of the factors over the three subperiods. The R-squared in the “Pre-Crisis” subperiod is only slightly lower than the R-squared for the whole sample period; the R-squared for the “Crisis” subperiod is higher than the whole sample period; and the R-squared for the “Post-Crisis” subperiod is lower than the whole sample period. We might, therefore, interpret the R-squared for the whole sample period as representative of the average explanatory power of our factors with respect to the magnitude of the volatility risk premium. We also observe that, over the entire sample period, the most significant explanatory variables are credit spread and put option open interest (which we will show serves as compelling evidence in favor of the hypotheses H1 and H2); and, there seems to be a trend that these two factors become increasingly more significant over time. In the “Pre-Crisis” subperiod, neither the credit spread nor put option open interest are significant, but the TED spread is the sole significant explanatory variable (at the < 1% level). During the “Crisis” subperiod, the credit spread is highly significant (at the < 1% level) and open interest is significant at the 10% level. In the “Post-Crisis” subperiod, both credit spread and put option open interest are highly significant (at the < 1% level), and the TED spread reappears as minimally significant (< 10% level). When examined together, the results render an interesting story that supports our hypothesis that the magnitude of the volatility risk premium (i.e. the bias between realized and implied volatilities) represents the price that options dealers require to provide liquidity and investors pay to hedge their tail risk. In fact, the trend seems to indicate that the increase in high-frequency data will allow for more precise and accurate measurement of the volatility risk premium and that going forward the results will provide even stronger support for this data-driven analysis of the priced bias in options markets.

During the “Crisis” subperiod, the R-squared of the magnitude regression indicates that the factors are able to explain more than 63% of the variation in the mag-
nitude component of the volatility risk premium. The most significant explanatory variable is the credit spread, which not only provides validation for the risk aversion interpretation of the volatility risk premium, but also supports the hypothesis that the magnitude of this bias reflects the willingness of market makers to absorb inventory and take risk onto their balance sheet. This is actually a pivotal point in our analysis and below we will argue why this particular result represents an important finding within the context of our proposed framework.

Lastly, there is the “Post-Crisis” subperiod. Although the R-squared (27.75%) drops off substantially compared to either of the other subperiods or the entire sample period, first note that both the credit spread and the put option open interest are highly significant. The economic interpretation of the coefficients is consistent with the findings from the whole sample period and supports our hypotheses. The R-squared is interesting since it indicates perhaps a structural change after the financial crisis. Since the R-squared measures the proportion of the variation in the y-variable (here the magnitude of the vrp) that is explained by the x-variables (the risk factors and economic variables) it makes sense to simply look at the descriptive statistics to see if any patterns emerge to which we might attribute a structural change. In the “Post-Crisis” subperiod, both the vrp and its magnitude have less variation (standard deviations of 4.19 and 3.52, respectively) than the entire sample period (standard deviations of 6.91 and 5.63, respectively), so a possible explanation is that some factor(s) lost relatively more of their variability and became less correlated with the vrp. We know that early on in the sample period, the TED spread appeared to have good explanatory power with respect to the vrp and even more so for the magnitude, but that the significance seems to disappear over time. We also see that the mean and standard deviation of the TED spread become very small in the “Post-Crisis” subperiod (mean of 38bps and standard deviation of 17bps). The TED spread was our proxy for liquidity risk and financial market stability, which has a secondary or tertiary effect when analyzing the regression results. However, it is possible that after the Crisis, the low TED spread, with its minimal variation, ceased to be a good proxy for liquidity risk and financial stability. We also saw that over time the put
option open interest, our proxy of demand for hedging tail risk, seemed to become increasingly more important. While the mean put option open interest increased over time (4.13mm, 6.59mm, and 10.51mm, for the “Pre-Crisis”, “Crisis, and “Post-Crisis” subperiods, respectively) – which could just be indicative of the growing market for index options and options on ETF’s – its standard deviation falls during the “Crisis” subperiod (from 1.57 to 0.92) and then more than doubles in the “Post-Crisis” period (2.05). It is possible that because of the government’s implicit and explicit backstop, the so-called “Fed put” made demand play less of a role during the Crisis, but as we emerged, new demand for hedging tail risk came to be a key driver in explaining the market price of volatility risk. Therefore, our structural change could be the increased role of put option open interest and investors’ demand for hedging tail risk rather than liquidity and overall financial stability as being a key factor. Additionally, since the quality and quantity of data increased over this period, it might also suggest the additional economic insight that can be obtained from in-depth analysis of large scale financial data. Next we examine the direction, or sign, of the volatility risk premium.

4.3.3 Sign Tests

While a negative volatility risk premium is justified theoretically and for the most part supported by the data, the large positive spike in \(vrp \) in the middle of the Financial Crisis as well as several other positive spikes throughout the entire sample period provides a paradox. To help reconcile this paradox within our bias interpretation, we decomposed the volatility risk premium into magnitude (which was tested in the previous section) and direction. The direction, or sign, of the bias contains different information as proposed by Hypotheses H3 and H4. Recall, H3 echos the view of some derivative traders that the direction, or sign, of the volatility risk premium reflects the market’s expectation of future changes in volatility. When the \(vrp \) is negative, then the realized volatility in the equity market is less than the implied volatility extracted from option prices. Volatility is priced higher in the forward-looking options market indicating that market participants expect realized volatility to increase in the future.
When the vrp is positive, then the realized volatility in the equity market is greater than the implied volatility extracted from option prices. Volatility is priced lower in the forward-looking options market indicating that market participants expect realized volatility to decrease in the future.

We seek to test Hypothesis H3 using a modified version of the regression proposed in Aït-Sahalia et al. (2012) to test the Expectation Hypothesis. First, to establish a baseline against which to compare our modified regression we run the following specification of the Expectation Hypothesis:

$$RV_t = \alpha + \beta_1 VIX_{t-21} + \epsilon_t. \tag{14}$$

Here, the y-variable is the average ex-post realized volatility using the frequency domain estimation methodology for the current 21 trading-day period; the x-variable is the 21 trading-day lagged VIX. The idea is to see whether implied volatility does in fact convey information about the market’s expectations about the future realized volatility levels. If implied volatilities are unbiased and efficient estimates of future realized volatility, then we could use the VIX index to predict what the future level of realized volatility will be one month in the future. This is the essence of the Expectation Hypothesis. The results for this regression can be found in Table 9.

Next we run the modified regression, which we specify as:

$$RV_t = \alpha + \beta_1 VIX_{t-21} + \beta_2 \text{sgn}(vrp_{t-21}) + \epsilon_t. \tag{15}$$

to see whether or not the sign of the volatility risk premium makes any significant contribution in predicting future levels of realized volatility conditional on the level of VIX. The results for this regression can be found in Table 10.

First, let us look at Table 9 to review the results of the initial specification in Equation (14). The coefficient β_1 is significant at the $< 1\%$ level and the R-squared indicates that the lagged VIX is able to explain 32.56% of the future realized volatility. This suggests that implied volatility does have some predictive power for realized volatility, or in other words, it represents to some extent the market’s expectation.
about future realized volatility. We note that the t-statistic and p-value associated with β_1 just tells us that the coefficient is statistically different from zero. It is easy to show that β_1 is also statistically less than 1.14 The implication is that if you know the current level of VIX and want to predict the future realized volatility, you would first discount the level of VIX (by approximately 0.45) and then add a constant ($\alpha = 5.28\%$) if you believe the forecasting model in Equation (14). Furthermore, the results in Table 9 indicate that for VIX > 9.629, implied volatility tends to overestimate future realized volatility; this implies that, except when VIX is very low, there should be a negative volatility risk premium. However, we know from examining our time series, that the vrp was positive when VIX was approaching historical highs. Therefore, perhaps a simple linear model such as in Equation (14) does not tell the entire story about the Expectations Hypothesis when it comes to volatilities.

To test hypothesis H3, we introduce a binary variable, $\text{sgn}(\text{vrp})$ which equals -1 if $\text{vrp} < 0$ and +1 if $\text{vrp} > 0$ and run the modified regression specified in Equation (15). This attempts to identify whether or not the direction, or the sign, of the volatility risk premium provides additional information about future levels of realized volatility. The results in Table 10 indicate that including the sign of the vrp improves the explanatory power as the adjusted R-squared is 54.7% with everything -- α, β_1, β_2 -- significant at the < 1% level. Note that β_1 is still statistically less than 1, but the relationship between the lagged level of VIX and the future level of realized volatility is no longer linear. The results do provide some insight with respect to hypothesis H3.

The results can be used to predict next month’s realized volatility in terms of the sign of the current volatility risk premium and conditional on the current level on VIX. Suppose the VIX is currently 21 (roughly the median value for our entire sample period). Then our prediction for next month’s realized volatility level depends on whether the vrp is currently positive or negative. If the vrp is negative, then the results of the regression specified by Equation (15) predicts next month’s

\[t = \frac{\beta_1 - 1}{se_{\beta_1}} = \frac{0.45143 - 1}{0.06834} = -8.27. \]
realized volatility to be approximately 13.41%; and, thus, when the vrp is negative, implied volatility overestimates expected future realized volatility. However, if the vrp is positive, the forecast changes to 29.95% and we see that, now, implied volatility underestimates expected future realized volatility. This appears to confirm hypothesis H3; but note that it still depends on the level of VIX, so let us verify the results for higher and lower VIX values. Suppose the current VIX level is 13 (just below the median value for the “Pre-Crisis” subperiod). If the vrp is negative, then the prediction for next month’s realized volatility is approximately 9.57%, and, again, implied volatility overestimates future realized volatility. However, if the vrp is positive, this prediction changes to 26.11% and, again, implied volatility underestimates future realized volatility. Finally, suppose the VIX is 30 (above the median value for the “Crisis” subperiod). If the vrp is negative, then the forecast for next month’s realized volatility is approximately 17.72%. However, if the vrp is positive, the forecast becomes 34.26%. We see that when vrp is negative, implied volatility tends to overestimate expected future realized volatility, and when vrp is positive, implied volatility tends to underestimate expected future realized volatility, and it seems to hold in low, medium, and high VIX regimes.

These results should be met with some degree of skepticism. Aït-Sahalia et al. (2012) show that as the forecasting horizon increases, the parameter estimates of the Expectation Hypothesis regression become biased and inefficient. So, while our results do perhaps provide some evidence in favor of hypothesis H3, the statistical inferences may not be sound. Furthermore, it does not say much about the economic meaning of a positive or negative volatility risk premium.

Alternatively, Bakshi and Kapadia (2003) provide an explanation that is more consistent with our motivating theme about market-making and intermediation in the options market. They show, both theoretically and with empirical evidence on index options, that a negative volatility risk premium is representative of the underperformance of a delta-neutral portfolio, where the trader sells calls and purchases Δ units of the underlying as a hedge or sells puts and shorts Δ units of the underlying as a hedge. Since we are examining the vrp in terms of market makers who
provide liquidity to investors that wish to hedge downside tail risk with put options on the market (the S&P 500 index or SPDR ETF), the market maker must short the underlying (e.g. SPDRs) in order to maintain delta-neutrality. Consequently, the market maker will have a gain on the delta-hedge when the S&P 500 is down and a loss on the delta-hedge when the S&P 500 is up. Table 11 shows the annualized returns on the S&P 500 index when the volatility risk premium is positive (Panel A) and negative (Panel B). We can see that for every period that the vrp is positive, the S&P 500 has negative returns. This is consistent with, in the less frequent instances when the vrp is positive, traders making a market in SPY put options have a profit on their delta-neutral hedge. More often than not, when the vrp is negative, traders making a market in SPY put options are losing money on their delta-neutral hedge as evidenced by the majority of periods that show positive returns on the S&P500, as well as the overall average annualized return of 10.99% when the vrp is negative. This suggests strong evidence in favor of H4.

In order to give more econometric rigor and statistical significance of this relationship posited by hypothesis H4, we ran the following regression:

$$S&P_{\text{return}}_t = \beta_0 + \beta_1 \text{sgn}(\text{vrp}_t) + \epsilon_t$$ (16)

where the dependent variable, $S&P_{\text{return}}_t$, is the annualized daily return on the S&P500 index and on day t and the independent variable, sgn(\text{vrp}_t), is the sign of the contemporaneous volatility risk premium; The results for the regression specified by Equation (16) can be found in Table 12. The coefficient estimate for β_1 is negative and significant at the $< 5\%$ level. We can therefore conclude from this regression that returns on the S&P 500 index statistically depend on whether the volatility risk premium is positive or negative. Furthermore, the negative coefficient estimate supports the delta-hedged gains argument of Bakshi and Kapadia (2003), but within the context of put options on the market: when the vrp is positive, returns on the S&P 500 (or SPDRs) can be expected to be negative (and the delta hedge of being short the underlying will make money), whereas when the vrp is negative, returns on the S&P 500 (or SPDRs) can be expected to be positive (and the delta hedge of being...
short the underlying will lose money). This gives more statistical evidence supporting H4. In the next section we provide a comprehensive synthesis of the findings within the context of the established economic framework and proposed hypotheses.

5 Discussion and Interpretation of Results

In this section we provide a more in-depth analysis of the empirical results, specifically focusing on the results of the magnitude regressions and the sign tests. We seek to combine all of the results into a comprehensive synthesis with the goal of interpreting them within the context of the volatility risk premium as a priced bias and addressing the hypotheses developed in Section 2, that magnitude and direction of the bias contain different information about the underlying economics. From a statistical standpoint, analyzing the magnitude of the bias is more efficient because allowing the volatility risk premium to change sign introduces additional noise that cannot be explained by the data. This can easily be seen in Table 2 where the standard deviation of vrp is uniformly higher than abs(vrp) across the entire sample (23% higher) and all subperiods (39% higher during the Crisis). Comparing the R-squared of the vrp regression in Table 4 (41.55%) versus the magnitude regression in Table 5 (58.32%) provides additional confirmation. Furthermore, it is very difficult to assign economic meaning to the volatility risk premium becoming increasingly positive, when it is supposed to represent the price that is paid to hedge volatility risk. By viewing the sign of the volatility risk premium as a binary event (negative or positive) that contains information distinct from how large the volatility risk premium is, we are able to test specific hypotheses about the motivating economic forces behind it. We can, therefore, separately examine the size of the volatility risk premium in absolute value terms and interpret it as the price that investors will pay to hedge volatility risk and market makers are willing to accept to provide liquidity to that market; that is, understand it in terms of supply and demand in a competitive market that prices risk.
Wu (2011) shows that the absolute value of the variance risk premium is proportional to the level of volatility in the market. Therefore, the variance risk premium (and consequently the volatility risk premium) is either very negative or very positive when volatility levels are high. This provides added justification for examining the absolute value of the volatility risk premium to make inferences about the price of volatility risk. More specifically, it suggests that uncertainty in the market increases the bias between realized and implied volatility and the price that must be paid to hedge this risk. We seek link this to demand for hedging tail risk and liquidity provision to the volatility market (hypotheses H1 and H2).

Looking at the magnitude regression results for the entire sample period, we see that the independent variables are able to explain more than half of the variability in the size of the volatility risk premium (R-squared of 58.32% in Table 5). The interpretation of the magnitude or absolute value of the bias represents the price that investors are willing to pay to hedge their downside tail risk and the price that market makers are willing to accept as compensation for providing liquidity to meet this demand. Market makers are going to meet demand that investors have for hedging downside tail risk regardless of whether implied volatilities are greater than or less than realized ones. When demand is higher, we expect to see market makers widen spreads thereby increasing the effective price of volatility risk – the magnitude of the volatility risk premium. This is precisely what we see in the data, where put option open interest is our proxy for hedging downside tail risk.

For the entire sample period, the estimated coefficient of put option open interest is 6.7138×10^{-7} and is statistically significant at the < 1% level. The interpretation and economic significance of this result is that, over the entire sample period, a 1 million unit increase in hedging demand results in an increase in the magnitude of the volatility risk premium of approximately 67bps. This is what can be considered a demand-side effect, holding supply constant. If we were to allow the supply and other factors to change, then the marginal regressions tell a similar story: a 1 million unit increase in hedging demand results in an increase in the magnitude of the volatility risk premium.
risk premium of approximately 57bps.15 For the entire sample period, the data does support H1, both statistically and economically.

The other highly significant variable in the magnitude regression for the entire sample period is the credit spread with an estimated coefficient of 5.1703. The interpretation is that, for the entire sample period, holding the other factors constant, a 100bps widening of the credit spread can be expected to result in approximately a 517bps increase in the price of volatility risk. Credit spreads widening can be indicative of many things, including increased risk aversion (Chen et al., 1986), which has been linked to the volatility risk premium in previous studies. However, there is also a supply-side interpretation that is consistent with H2 and has very strong economic significance.

The supply-side effect is, holding demand for hedging tail risk constant, if market makers are less willing to take on additional risk then as a result the price for volatility risk will increase. There is evidence of this through the credit spread variable. In addition to being used in the literature as a proxy for risk aversion, more recently some papers have suggested that the credit spread represents “global risk appetite” (Bekaert et al., 2009, 2011). Professional traders view the magnitude of the volatility risk premium as a reflection of the risk tolerance of market makers, along the lines of this “risk appetite” interpretation. We further believe that credit spreads, or the difference between yields on speculative and investment grade debt, captures a related supply-side effect that is present for the entire sample period and seems to dominate during the “Crisis” subperiod. When a financial institution is concerned with the risk on its balance sheet, one way to reduce the overall risk exposure is to \textit{de-leverage}. De-leveraging can be achieved through the right-hand-side of the balance sheet by altering the capital structure: buying back debt, issuing equity, or both. However, there is evidence that large financial institutions have a preference to de-leverage through the left-hand-side of the balance sheet: i.e. reducing its holding of risky assets (Adrian and Shin, 2010). Bai and Collin-Dufresne (2011) show that the credit spread actually

15The coefficient on the \textit{POI} marginal regression is 5.6972×10^{-7} and is significant at the $< 1\%$ level.
picks up this effect quite well, particularly during the 2007-2009 Financial Crisis. They present evidence that the large financial institutions classified as primary dealers in the credit markets sold off their holdings of risky corporate debt which would have exerted downward pressure on speculative grade bond prices and increases in yields relative to investment grade debt. During the crisis, de-leveraging no doubt played a role in the extreme widening of credit spreads in late 2008 into early 2009. This can explain the dominant impact of the credit spread variable in explaining the changes in the volatility risk premium during the “Crisis” subperiod in our results, since there is a high degree of overlap in the set of institutions that serve as primary dealers in the credit markets and those that are market makers in index options. During the “Crisis” subperiod, recall that the most statistically significant explanatory variable was the credit spread (see Table 7). The economic significance of the coefficient estimate is that for a 100bps widening of the credit spread we would expect a 624bps increase in the price of volatility risk. As can be seen from Figure 2, credit spreads increased dramatically at the end of 2008. While this can certainly be viewed as an increase in risk aversion or decrease in global risk appetite, it is also reflective of the massive de-leveraging that occurred after the failure of Lehman Brothers. As large financial institutions reduced their holdings of speculative grade debt they were also reluctant to take on additional risk in other markets. It is reasonable to conclude that during this time dealers in index options increased the price at which they were willing to make a market for hedging downside tail risk, thus increasing the magnitude of the volatility risk premium during this time. Because of the inherent leverage in option positions, it is not surprising to see a multiplier effect to the order of 5 to 7 times that of what occurs in the credit markets. This supply-side effect was clearly the driving force behind the increase in the magnitude of the volatility risk premium, not only because it is the only statistically significant explanatory variable during the “Crisis” subperiod, but also because there were no sharp increases in demand for put options on SPRDs as can be seen in Figure 3 where open interest fluctuated between

16 Compare the Federal Reserve Bank of New York’s list of primary dealers at http://www.newyorkfed.org/markets/pridealers_current.html with the members of the Options Clearing Corporation that are dealers of index options at http://www.optionsclearing.com/membership/member-information/
5,000,000 and 10,000,000 when the range for the entire sample period is 2,000,000
to nearly 16,000,000; this can also be seen in Table 2 by comparing the standard
deviation for the put open interest variable across subperiods. While it may seem
curious that during the most uncertain point in the financial crisis investors were
not aggressively trying to hedge their downside tail risk, but there is an intuitive
explanation for this: the so-called “Fed put”. After the failure of Lehman Brothers
and the subsequent bailout of the financial industry, it became clear that the federal
government would provide a backstop either implicitly or explicitly. Therefore, there
was little need for investors to pay the high price to hedge their downside tail risk.
After the financial crisis, however, demand for hedging downside tail risk returned
(see Figure 3) and, indeed, put option open interest was highly significant in the
“Post-Crisis” subperiod (see Table 8). This is in addition to the credit spread which
still represents the supply-side effect.

Of course, we can also examine what impact this supply-side effect would have
on the magnitude of the volatility risk premium if we allow the demand-side effect
and other factors to change with it. The marginal regressions indicate that a 100bps
increase in the CS results in a 550bps increase in the price of volatility risk over the
entire sample period.17

Next we move on to the two hypotheses about the direction, or sign, of the vrp
(H3 and H4). The volatility risk premium is typically negative, but occasionally does
go positive. Practitioners like to think of the sign of the volatility risk premium as
conveying information about the market’s expectations of future realized volatility. A
negative volatility risk premium indicates that volatility implied by option prices (i.e.
expectation under the risk-neutral, or pricing, measure) is higher than the actual
volatility (computed under the physical measure). If the forward-looking options
market is pricing volatility higher than the underlying market, then it can be an
indicator that volatility will rise over the period in question. Uncertainty about future
levels of risk tends to result in being pessimistic, which explains why the volatility risk
premium is typically negative. A positive volatility risk premium suggests the reverse:

17The coefficient on the CS marginal regression is 5.5003 and is significant at the < 1% level.
implied volatility is below actual levels of volatility, implying that the forward-looking options market is pricing down volatility risk thereby indicating expectations that volatility will fall over the period in question. This is the essence of hypothesis H3 which bears resemblance to the Expectation Hypothesis in A"ıt-Sahalia et al. (2012). It turns out that it is very difficult to empirically test whether or not the sign of the volatility risk premium is able to predict future realized volatility. We ran a modified version of the regression proposed in A"ıt-Sahalia et al. (2012), and we did find that the sign component of the \(vrp\) does appear to contain information about the future level of realized volatility. However, in light of the potential statistical problems and the lack of a strong economic interpretation of the results, we cannot accept H3 (nor can we necessarily reject it).

The Bakshi and Kapadia (2003) explanation for the negative volatility risk premium reflects delta-hedged gains (or losses). This provides the theoretical basis for our hypothesis H4. Rather than perform rigorous statistical tests of this hypothesis, we used our sample data to carry out an experiment to test the economics behind H4. We looked at the returns on the S&P500 over the periods when \(vrp < 0\) versus the returns when \(vrp > 0\). The results are shown in Table 11. Panel A shows that a trader who was making a market in S&P500 index put option and delta-hedged by shorting the SPDR ETF would have made money on the hedge during times when the \(vrp\) was positive, and would have lost money on the hedge in all but one of the periods where the \(vrp\) was negative. On average, the results do seem to confirm H4.

These results are consistent with the conceptual framework of options market making and delta-hedging. When market makers are selling volatility, they would like to hedge their exposure to the underlying. When they are providing liquidity to investors that wish to hedge downside tail risk with put options on the market (or on the SPDR ETF), the market maker must short the underlying (e.g. SPY) in order to be delta-neutral. Therefore, the market maker will have a gain on the delta-hedge when the S&P500 is down and a loss on the delta-hedge when the S&P 500 is up. Bakshi and Kapadia (2003) were the first to hypothesize and provide empirical evidence for this interpretation of the sign of the volatility risk premium. Indeed we
are able to find evidence of this in the SPDR ETF data, as discussed above. There is an observed pattern that when the S&P 500 is down, the VIX tends to be up; this is a phenomenon referred to as the “leverage effect” (see Black (1976), Christie (1982)). However, this relationship does not seem to hold when using the realized volatility; a phenomenon referred to as the “leverage effect puzzle” (Aıt-Sahalia et al. (2013)). The fact that the relationship between the market and delta-hedged gains/losses cannot be extended to understand the profitability of volatility positions is yet further justification for why we should separate the sign of the vrp from its magnitude.

In sum, we find that there is evidence, albeit weak, in favor of H3. We find more economic significance supporting H4. There is also very strong statistical and economic relationships found in the data to support H1 and H2, and the marginal regression results confirm that these relationships still hold and need not be mutually exclusive.

6 Conclusion

“Big Data” has the potential to transform research in many areas, including financial economics and risk analysis. We use a massive data set, collated from numerous sources, to perform a unique study of how the market prices volatility. Our research questions equate the volatility risk premium to a systematically priced bias between ex-post realized volatility and ex-ante expected volatility implied by options. Unlike most other studies of the volatility risk premium, rather than start with a theoretical model of volatility, we begin with intensive data-driven methods leveraging the insights of Big Data analytics.

First, we collected price and volume data on every transaction in SPDRs, the ETF that tracks the S&P 500 index, over a five year period from 2006 through 2011 yielding over half a billion observations. After cleaning and processing the ultra-high-frequency price data, we use a novel technique to estimate the integrated volatility. A problem with using high-frequency price data is that the observations are often clouded by microstructure noise. This noise can accumulate and even outweigh the
signal, resulting in biased and inefficient estimators as well as the potential for heavy tail dependence. Our estimation technique is related to spectral analysis and utilizes the Fourier transform to work in the frequency domain. This methodology allows us to distinguish the true volatility of the price process and the microstructure noise, even when the noise is correlated over time. The result is a clean, de-biased estimate of the integrated volatility as our measure of realized volatility.

In constructing the time series of the volatility risk premium, we smooth the daily realized volatility by taking a 21-trading-day rolling average and subtract from it the daily value of VIX volatility index for the same month. VIX is a model-free implied volatility for the S&P 500 and, as such, is consistent with our data-driven approach. However, the data is generated from a different market and collected from another source with potential inconsistencies between the two platforms; these challenges must be dealt with to be able to compare the two time series. Such challenges are not uncommon in Big Data analytics. We also collect data on standard risk factors, as well as several financial market and economic variables from a variety of additional sources. After cleaning, matching, and merging these data items, we use them as explanatory variables in our analysis of the volatility risk premium.

Insofar as the option implied volatility represents the market’s expectation of future volatility, this formulation of the volatility risk premium is very much like a statistical bias. We decompose this bias into magnitude (absolute value) and direction (sign) and analyze them separately. Based on stylized facts about the volatility risk premium from the extant literature, we construct four testable hypotheses about the economic meaning and determinants of the volatility risk premium: two about the magnitude (H1 and H2) and two about the sign (H3 and H4). The general theme is that traditional risk factors are unable to explain the volatility risk premium over time, but rather are related to supply and demand forces in option markets and the role of market makers in providing liquidity to investors who seek to hedge their downside tail risk. This is all viewed within the lens of the volatility risk premium being systematically priced bias. The results indicate that the size of this bias – in terms of the absolute value of the deviation between realized and implied volatilities
- represents the price that market makers require to meet the demand of investors who wish to hedge their downside tail risk and compensates for supply and demand imbalances in this market. In fact, we find compelling evidence that during the Financial Crisis, supply-side forces dominated as financial intermediaries shed risky positions and were reluctant to take more risk onto their balance sheets. Demand-side forces dried up as the implicit guarantees and “Fed put” made hedging tail risk less attractive for investors. This is reflected in the highly significant credit spread, which reflects market makers de-leveraging during the Crisis, and reduced significant in put option open interest, which is our proxy for investors’ demand for hedging tail risk.

Practitioners view the sign of the volatility risk premium, on the other hand, to the market’s expectation about future levels of volatility. This is similar to the Expectation Hypothesis discussed in Aït-Sahalia et al. (2012) and, while we are able to find some evidence in favor of this hypothesis in the data, statistical issues raise doubt on the validity of the inferences and there is no clear economic interpretation within the conceptual framework we established. An alternative hypothesis links the sign of the volatility risk premium to the gains and losses on traders’ delta-hedged positions when making a market for index options. Bakshi and Kapadia (2003) were the first to propose this interpretation, and we are able to find fairly conclusive evidence in favor of it in the market for S&P 500 put options. That is, market makers provide liquidity to investors seeking to hedge their downside tail risk – via put options on SPDRs – will delta-hedge these positions by shorting shares of the underlying ETF. We find that returns on the S&P 500 are negative over all consecutive trading days where the volatility risk premium is positive, indicating a delta-hedged gain for the market maker. We find that the returns on the S&P 500 are positive over all but two series of consecutive trading days where the volatility risk premium is negative, indicating a delta-hedged loss for the market maker.

Overall, the ability of our data-driven analysis to identify economic insights into how the market prices volatility is very encouraging for researchers interested in using similar approaches for other quantitative studies in financial economics and risk analysis. While we do utilize the results from the existing literature along with eco-
nomic intuition to highlight some stylized facts about the volatility risk premium and come up with testable hypotheses, our analysis does not rely on any specific theoretical model and has minimal parametric assumptions. The trend over our sample period seems to indicate that the increase in high-frequency data will allow for more precise and accurate measurement of the volatility risk premium as a systematically priced bias. This will then allow for even better identification of the determinants of the volatility risk premium and highlight role that intermediation in the market for volatility and hedging downside risk as well as the role that supply and demand imbalances play in driving the deviation between realized and implied volatilities.
Appendix

A The Fourier Transform Method

A.1 Frequency Domain Representation

First define the discrete Fourier transform of the increment process $\Delta U_{t_j} = U_{t_{j+1}} - U_{t_j}$ of a sample from a generic time series $U_{t_j}, j = 1, \ldots, N$,

$$J_k^{(U)} = \sqrt{\frac{1}{N}} \sum_{j=1}^{N} \Delta U_{t_j} e^{-2\pi i t_j f_k}, f_k = \frac{k}{T}. \quad (17)$$

Recall that the latent true (log)price X_t follows an Ito process as in Equation (4). To simplify the notation, we assume the drift term is zero as it does not affect the asymptotic behaviour (for a more complete version, see Olhede et al. (2009)). The frequency domain estimator uses the fact that the integrated volatility can be written in terms of the variance of $J_k^{(X)}$. It can be shown that

$$\int_0^T E\{\sigma_s^2\} ds = \sum_{k=0}^{N-1} E|J_k^{(X)}|^2 + O(\Delta t). \quad (18)$$

However, what we observe is the transaction price Y_t at times $\{t_i\} \in [0, T]$ as in Equation (5), so at each frequency there is a noise contribution,

$$\sum_{k=0}^{N-1} E|J_k^{(Y)}|^2 = \sum_{k=0}^{N-1} \left(E|J_k^{(X)}|^2 + a^2 |2 \sin(\pi f_k \Delta t)|^2 \right), \quad (19)$$

where for now we assume ϵ_t is a white noise process with variance a^2.

45
A.2 The De-biased Estimator

The frequency domain representation gives us a nice way to disentangle the microstructure noise. If we could shrink by

\[L_k = \frac{E|J_k^{(X)}|^2}{E|J_k^{(X)}|^2 + a^2|2\sin(\pi f_k \Delta t)|^2} \] (20)

at each frequency, an oracle estimator would be \(\langle X, X \rangle_T^{(L_k)} = \sum_{k=0}^{N-1} L_k |J_k^{(Y)}|^2 \). It remains the task to estimate the multiscale ratio \(L_k \). The unknown quantities in Equation (20) can be estimated by the Whittle log-likelihood,

\[l(\sigma_X^2, a^2) = -\sum_{k=1}^{N/2-1} \log \left(\sigma_X^2 + a^2|2\sin(\pi f_k \Delta t)|^2 \right) - \sum_{k=1}^{N/2-1} \frac{|J_k^{(Y)}|^2}{\sigma_X^2 + a^2|2\sin(\pi f_k \Delta t)|^2}, \] (21)

therefore

\[\hat{L}_k = \frac{\hat{\sigma}_X^2}{\hat{\sigma}_X^2 + \hat{a}^2|2\sin(\pi f_k \Delta t)|^2}. \] (22)

The final de-biased estimator is

\[\langle X, X \rangle_T^{(\hat{L}_k)} = \sum_{k=0}^{N-1} \hat{L}_k |J_k^{(Y)}|^2. \] (23)

It can be shown that this is a consistent estimator of the integrated volatility,

\[\langle X, X \rangle_T^{(\hat{L}_k)} = \int_0^T \sigma_i^2 \, dt + O_p(\Delta t^{1/4}). \] (24)

A.3 Autocorrelated Noise

If we assume that \(\epsilon_{t_j} \) is an autocorrelated stationary time series, it is convenient to model it as a moving average process of order \(q \),

\[\epsilon_{t_j} = \eta_{t_j} + \sum_{k=1}^{q} \theta_k \eta_{t-j-k}, \] (25)
where $\{\eta_t\}$ is a white noise process with variance σ^2_{η}. This MA(q) specification leads to a new likelihood function

$$l (\sigma^2_X, \sigma^2_{\eta}, \{\theta_k\}_{k=1}^q)$$

$$= - \sum_{k=1}^{N/2-1} \log \left(\sigma^2_X + \sigma^2_{\eta} |1 + \sum_{k=1}^q \theta_k e^{2i\pi f_k}|^2 \right) - \sum_{k=1}^{N/2-1} \frac{|J_k^Y|^2}{\sigma^2_X + \sigma^2_{\eta} |1 + \sum_{k=1}^q \theta_k e^{2i\pi f_k}|^2},$$

and therefore the multiscale ratio is defined as

$$\hat{L}_k = \frac{\hat{\sigma}^2_X}{\hat{\sigma}^2_X + \hat{\sigma}^2_{\eta} |1 + \sum_{k=1}^q \hat{\theta}_k e^{2i\pi f_k}|^2}.$$ (27)

To determine the order q in Equation (25), we minimize the corrected Akaike information criterion (AICC),

$$AICC(q) = -2l (\hat{\sigma}^2_X, \hat{\sigma}^2_{\eta}, \{\hat{\theta}_k\}_{k=1}^q) + 2 \cdot \frac{(q + 2)N}{N - q - 3}.$$ (28)
B Simulations

We simulate data using a Heston (1993) model (following the simulation in Olhede et al. (2009)), and compare the performance of Fourier method and naive subsampling at different sampling frequency. The Heston (1993) model is specified as:

\[
\begin{align*}
\frac{dX_t}{\mu - \nu_t/2} dt + \sigma_t dB_t, \\
\frac{d\nu_t}{\kappa(\alpha - \nu_t)} dt + \gamma \nu_t^{1/2} dW_t,
\end{align*}
\]

where \(\nu_t = \sigma_t^2\). The parameters are set as follows: \(\mu = 0.05\), \(\kappa = 5\), \(\alpha = 0.04\), \(\gamma = 0.5\), and the correlation between the two Brownian motions \(B_t\) and \(W_t\) is \(\rho = -0.5\). The initial values are \(X_0 = 0\) and \(\nu_0 = 0.04\). We take \(T\) as one day, and simulate data with \(\Delta_t = 0.1\)s, which yields a sample path of length \(N = 234,000\) in one trading day. We first calculate the underlying true integrated volatility by a Riemann sum approximation of the integral, i.e.:

\[
\frac{T}{N} \sum_{i=1}^{N} \sigma_t^2 = \int_0^T \sigma_t^2 dt.
\]

Then we add AR(2) noise \(\epsilon_i = 0.6\epsilon_{i-1} - 0.4\epsilon_{i-2} + \eta_i\), to get the observed data \(Y_i = X_i + \epsilon_i\), where \(\eta_i\)'s are i.i.d. \(\mathcal{N}(0, \sigma^2_{\eta})\) and we set \(\sigma_{\eta} = 5 \times 10^{-4}\).

We estimate the integrated volatility using two methods, the Fourier method and the naive subsampling, which yields \(<X, X>^\text{Fourier}_T\) and \(<X, X>^\text{subsampling}_T\). We calculate the RMSE (root-mean-square error) of the estimates to the truth over 200 simulated sample paths. To further illustrate the effect of high frequency data, we evaluate two methods from \(\Delta_t = 1s\) up to \(\Delta_t = 150s\). Figure 4 shows the RMSE of the Fourier method and the naive subsampling against decreasing sampling frequencies, where the RMSE is shown in logarithmic scale.

The takeaway of this figure is two folds. First, the Fourier method can effectively filter the correlated microstructure noise, and works better than naive sampling method. We did not implement other more sophisticated methods for comparison, as the simulation is not to illustrate the superiority of the Fourier method, but rather to justify the use of high frequency data. Second, if we can filter the microstructure

\[\text{These are the same as those used in the Olhede et al. (2009) simulations.}\]
noise, higher frequency gives us a better estimate as we are able to utilize more data hence more information.
References

Figure 1: Time Series of the Volatility Risk Premium
Figure 2:
Top: Time series of the absolute value of the volatility risk premium or the *magnitude component* of the vrp
Bottom: Time series of the credit spread, defined as the yield on Baa-rated and Aaa-rated corporate debt.
Note: The vertical lines separate the three subperiods.
Figure 3: Open interest for put options on the S&P500 index over the sample period. Put open interest is our proxy for investor demand for hedging downside tail risk.
Figure 4: RMSE of Two Methods
<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_m - r_f$ (Mkt)</td>
<td>Fama-French market risk factor; market return minus risk-free rate</td>
</tr>
<tr>
<td>SMB</td>
<td>Fama-French size factor</td>
</tr>
<tr>
<td>HML</td>
<td>Fama-French value factor</td>
</tr>
<tr>
<td>Credit Spread (CS)</td>
<td>Difference in yield on Baa-rated and Aaa-rated corporate debt</td>
</tr>
<tr>
<td>TED Spread (TED)</td>
<td>Difference between 3-month Eurodollar rate and 3-month Treasury rate</td>
</tr>
<tr>
<td>Put Open Interest (POI)</td>
<td>Daily open interest for put options on SPY</td>
</tr>
</tbody>
</table>

Table 1: Explanatory variables

<table>
<thead>
<tr>
<th></th>
<th>Whole-Sample (N = 1238)</th>
<th>Pre-Crisis (N = 338)</th>
<th>Crisis (N = 375)</th>
<th>Post-Crisis (N = 525)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Med</td>
<td>Std</td>
<td>Mean</td>
</tr>
<tr>
<td>vtrp</td>
<td>8.10</td>
<td>3.32</td>
<td>6.91</td>
<td>-4.53</td>
</tr>
<tr>
<td>abs(vtrp)</td>
<td>9.03</td>
<td>8.68</td>
<td>5.63</td>
<td>4.86</td>
</tr>
<tr>
<td>VIX</td>
<td>24.20</td>
<td>21.88</td>
<td>11.70</td>
<td>15.56</td>
</tr>
<tr>
<td>Mkt</td>
<td>0.02</td>
<td>0.10</td>
<td>1.60</td>
<td>0.04</td>
</tr>
<tr>
<td>SMB</td>
<td>0.016</td>
<td>0.02</td>
<td>0.64</td>
<td>-0.02</td>
</tr>
<tr>
<td>HML</td>
<td>-0.007</td>
<td>-0.01</td>
<td>0.73</td>
<td>-0.03</td>
</tr>
<tr>
<td>CS</td>
<td>1.35</td>
<td>1.09</td>
<td>0.68</td>
<td>0.90</td>
</tr>
<tr>
<td>TED</td>
<td>0.87</td>
<td>0.44</td>
<td>0.88</td>
<td>0.61</td>
</tr>
<tr>
<td>POI($\times 10^6$)</td>
<td>7.58</td>
<td>7.04</td>
<td>3.15</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Table 2: Descriptive statistics for all variables across all periods.
| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|----------|-----------|---------|----------|--------------|
| (Intercept) | -8.074632 | 0.329221 | -24.5265 | < 2.2e-16 | *** |
| Mkt | -0.876107 | 0.190903 | -4.5893 | 4.902e-06 | *** |
| SMB | 0.049744 | 0.365566 | 0.1361 | 0.8918 | |
| HML | 1.008269 | 0.478214 | 2.1084 | 0.0352 | * |

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|----------|-----------|---------|----------|--------------|
| (Intercept) | 4.2742e+00 | 1.4152e+00 | 3.0201 | 0.002579 | *** |
| Mkt | -7.4433e-01 | 1.5077e-01 | -4.9368 | 9.033e-07 | *** |
| SMB | 2.3838e-01 | 2.4281e-01 | 0.9817 | 0.326418 | |
| HML | 7.1323e-01 | 3.7520e-01 | 1.9009 | 0.057546 | * |
| CS | -6.9265e+00 | 1.2609e+00 | -5.4935 | 4.785e-08 | *** |
| TED | 2.0051e+00 | 1.4945e+00 | 1.3416 | 0.179965 | |
| POI | -6.2710e-07 | 9.9694e-08 | -6.2902 | 4.396e-10 | *** |

Adjusted R^2	0.02711
F-statistic	12.49 on 3 and 1234 DF
p-value	4.759e−08

Table 3: Regression of vrp on Fama-French risk factors. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|----------|-----------|---------|----------|--------------|
| (Intercept) | 4.2742e+00 | 1.4152e+00 | 3.0201 | 0.002579 | *** |
| Mkt | -7.4433e-01 | 1.5077e-01 | -4.9368 | 9.033e-07 | *** |
| SMB | 2.3838e-01 | 2.4281e-01 | 0.9817 | 0.326418 | |
| HML | 7.1323e-01 | 3.7520e-01 | 1.9009 | 0.057546 | * |
| CS | -6.9265e+00 | 1.2609e+00 | -5.4935 | 4.785e-08 | *** |
| TED | 2.0051e+00 | 1.4945e+00 | 1.3416 | 0.179965 | |
| POI | -6.2710e-07 | 9.9694e-08 | -6.2902 | 4.396e-10 | *** |

Adjusted R^2	0.4155
F-statistic	147.6 on 6 and 1231 DF
p-value	< 2.2e − 16

Table 4: Regression of vrp on explanatory variables: Whole Sample Period. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|-----------|------------|---------|----------|--------------|
| (Intercept) | -3.6404e+00 | 1.0045e+00 | -3.6239 | 0.000302 | *** |
| Mkt | 4.2400e-01 | 9.4296e-02 | 4.4965 | 7.560e-06 | *** |
| SMB | -1.1227e-01 | 1.5503e-01 | -0.7242 | 0.469092 | |
| HML | -1.3273e-01 | 1.4148e-01 | -0.9381 | 0.348354 | |
| CS | 5.1703e+00 | 6.4763e-01 | 7.9833 | 3.243e-15 | *** |
| TED | 6.8537e-01 | 5.3153e-01 | 1.2955 | 0.195408 | |
| POI | 6.7138e-00 | 8.3925e-08 | 7.9998 | 2.856e-15 | *** |

Adjusted \(R^2 \) 0.5832

Table 5: Regression of \(|v_{rp}|\) on explanatory variables: Whole Sample Period. Standard errors and \(t \)-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|-----------|------------|---------|----------|--------------|
| (Intercept) | -4.7395e+00 | 7.4185e+00 | -0.6389 | 0.5233 | |
| Mkt | 1.5573e-01 | 1.5360e-01 | 1.0139 | 0.3114 | |
| SMB | 1.6859e-01 | 3.2744e-01 | 0.5149 | 0.6070 | |
| HML | 4.1528e-01 | 6.1978e-01 | 0.6700 | 0.5033 | |
| CS | 7.5490e+00 | 8.0908e+00 | 0.9330 | 0.3515 | |
| TED | 5.6288e+00 | 8.7777e-01 | 6.4126 | 4.934e-10 | *** |
| POI | -1.6247e-07 | 2.9512e-07 | -0.5505 | 0.5823 | |

Adjusted \(R^2 \) 0.5789

Table 6: Regression of \(|v_{rp}|\) on explanatory variables: Pre-Crisis Subperiod. Standard errors and \(t \)-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|-----------|-----------|---------|----------|--------------|
| (Intercept) | -1.0040e+01 | 4.0327e+00 | -2.4897 | 0.01322 | ** |
| Mkt | 4.8153e-01 | 1.1335e-01 | 4.2481 | 2.735e-05 | *** |
| SMB | 1.4010e-01 | 1.7774e-01 | 0.7883 | 0.43105 | |
| HML | -1.6113e-01 | 1.8898e-01 | -0.8527 | 0.39440 | |
| CS | 6.2419e+00 | 7.3952e-01 | 8.4405 | 7.350e-16 | *** |
| TED | 8.9576e-01 | 6.6878e-01 | 1.3394 | 0.18127 | |
| POI | 1.0826e-06 | 5.8060e-07 | 1.8647 | 0.06302 | * |

Adjusted R^2 0.6366

F-statistic 110.2 on 6 and 368 DF

p-value $< 2.2e-16$

Table 7: Regression of $|v_{rp}|$ on explanatory variables: Crisis Subperiod. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|----------|-----------|-----------|---------|----------|--------------|
| (Intercept) | -6.3951e+00 | 3.1377e+00 | -2.0381 | 0.042046 | ** |
| Mkt | 5.2553e-02 | 1.6511e-01 | 0.3183 | 0.750387 | |
| SMB | -2.5424e-01 | 2.6633e-01 | -0.9546 | 0.340230 | |
| HML | 2.9242e-01 | 3.3875e-01 | 0.8632 | 0.388413 | |
| CS | 1.1665e+01 | 2.2727e+00 | 5.1329 | 4.042e-07 | *** |
| TED | -5.2204e+00 | 3.0118e+00 | -1.7333 | 0.083630 | * |
| POI | 4.9471e-07 | 1.6949e-07 | 2.9188 | 0.003666 | *** |

Adjusted R^2 0.2775

F-statistic 34.55 on 6 and 518 DF

p-value $< 2.2e-16$

Table 8: Regression of $|v_{rp}|$ on explanatory variables: Post-Crisis Subperiod. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.
| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|--------------|-----------|-----------|---------|----------|--------------|
| (Intercept) | 5.28323 | 1.70561 | 3.0976 | 0.001996 | *** |
| VIX_{t-21} | 0.45133 | 0.06634 | 6.8033 | 1.601e-11| *** |

Adjusted R^2 0.3256
F-statistic 588 on 1 and 1215 DF
p-value $< 2.2e-16$

Table 9: Regression to test the Expectation Hypothesis. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are $< 1\%$, $< 5\%$, and $< 10\%$ for ***, **, and *, respectively.

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|--------------|-----------|-----------|---------|----------|--------------|
| (Intercept) | 11.61774 | 3.27874 | 3.5434 | 0.0004101| *** |
| VIX_{t-21} | 0.47898 | 0.05470 | 8.7565 | $< 2.2e-16$| *** |
| $\text{sgn}(\nu_{t-21})$ | 8.26995 | 3.13237 | 2.6402 | 0.0083930 | *** |

Adjusted R^2 0.547
F-statistic 735.2 on 2 and 1214 DF
p-value $< 2.2e-16$

Table 10: Regression to test the Modified Expectation Hypothesis (H3). Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are $< 1\%$, $< 5\%$, and $< 10\%$ for ***, **, and *, respectively.
Positive vrP Dates

<table>
<thead>
<tr>
<th>Dates</th>
<th>Trading Days</th>
<th>Avg(vrp)</th>
<th>S&P500 Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/02/02 - 2007/02/27</td>
<td>17</td>
<td>1.49</td>
<td>-47.81%</td>
</tr>
<tr>
<td>2007/07/12 - 2007/07/26</td>
<td>11</td>
<td>2.76</td>
<td>-53.34%</td>
</tr>
<tr>
<td>2007/12/21 - 2008/01/02</td>
<td>7</td>
<td>1.17</td>
<td>-30.65%</td>
</tr>
<tr>
<td>2008/08/15 - 2008/10/08</td>
<td>38</td>
<td>11.69</td>
<td>-169.62%</td>
</tr>
<tr>
<td>2010/04/08 - 2010/05/04</td>
<td>19</td>
<td>3.63</td>
<td>-8.37%</td>
</tr>
</tbody>
</table>

Average S&P500 return when vrP is positive: -88.13%

Negative vrP Dates

<table>
<thead>
<tr>
<th>Dates</th>
<th>Trading Days</th>
<th>Avg(vrp)</th>
<th>S&P500 Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006/07/31 - 2007/02/01</td>
<td>128</td>
<td>-3.88</td>
<td>24.50%</td>
</tr>
<tr>
<td>2007/02/28 - 2007/07/11</td>
<td>93</td>
<td>-3.72</td>
<td>22.89%</td>
</tr>
<tr>
<td>2007/07/27 - 2007/12/20</td>
<td>103</td>
<td>-8.18</td>
<td>-1.71%</td>
</tr>
<tr>
<td>2008/01/03 - 2008/08/14</td>
<td>156</td>
<td>-6.52</td>
<td>-15.89%</td>
</tr>
<tr>
<td>2008/10/09 - 2010/04/07</td>
<td>375</td>
<td>-13.40</td>
<td>18.56%</td>
</tr>
<tr>
<td>2010/05/05 - 2011/06/29</td>
<td>291</td>
<td>-9.88</td>
<td>10.42%</td>
</tr>
</tbody>
</table>

Average S&P500 return when vrP is negative: 10.99%

(a) Panel A: S&P500 returns (annualized) when vrP is positive

(b) Panel B: S&P500 returns (annualized) when vrP is negative

Table 11: Test of Delta-Hedged Gain/Loss Hypothesis

| Variable | Estimate | Std Error | t-value | Pr(>|t|) | Significance |
|-----------|-----------|------------|----------|---------|--------------|
| (Intercept)| -0.38570 | 0.23188 | -1.6633 | 0.09650 | * |
| sgn(vrp) | -0.49555 | 0.22375 | -2.2148 | 0.02696 | ** |

Adjusted R^2: 0.00347

F-statistic: 5.308 on 1 and 1236 DF

p-value: 0.0214

Table 12: Regression of S&P 500 return on the direction of vrP. Standard errors and t-statistics are computed using the Newey-West correction. Significance levels are < 1%, < 5%, and < 10% for ***, **, and *, respectively.